Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 25, 2026
-
We introduce RGB2Point, an unposed single-view RGB image to a 3D point cloud generation based on Transformer. RGB2Point takes an input image of an object and generates a dense 3D point cloud. Contrary to prior works based on CNN layers and diffusion-denoising approaches, we use pre-trained Transformer layers that are fast and generate high-quality point clouds with consistent quality over available categories. Our generated point clouds demonstrate high quality on a real-world dataset, as evidenced by improved Chamfer distance (51.15%) and Earth Mover’s distance (36.17%) metrics compared to the current state-of the-art. Additionally, our approach shows a better quality on a synthetic dataset, achieving better Chamfer distance (39.26%), Earth Mover’s distance (26.95%), and F-score (47.16%). Moreover, our method produces 63.1% more consistent high-quality results across various object categories compared to prior works. Furthermore, RGB2Point is computationally efficient, requiring only 2.3GB of VRAM to reconstruct a 3D point cloud from a single RGB image, and our implementation generates the results 15,133× faster than a SOTA diffusion-based model.more » « lessFree, publicly-accessible full text available February 26, 2026
-
Free, publicly-accessible full text available February 1, 2026
-
Free, publicly-accessible full text available March 25, 2026
-
The ribosome is a major cellular machine that converts genetic information into biological function. Emerging data show that the ribosome is not only a protein synthesis machine, but also participates in the maturation of the nascent protein into properly folded and active molecules. The ribosome surface near the opening of the polypeptide exit tunnel can interact directly with the newly synthesized proteins and, more importantly, provides a platform where numerous protein biogenesis factors assemble, gain access to the nascent chain, and direct them into diverse biogenesis pathways. In this article, we review the current understanding of cotranslational protein maturation pathways, with an emphasis on systems in which biochemical studies provided a high-resolution molecular understanding and yielded generalizable mechanistic principles.more » « lessFree, publicly-accessible full text available February 1, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
Abstract Incorporation of colloidal quantum emitters into silicon-based photonic devices would enable major advances in quantum optics. However, deterministic placement of individual sub-10 nm colloidal particles onto micron-sized photonic structures with nanometer-scale precision remains an outstanding challenge. Here, we introduce Cavity-Shape Modulated Origami Placement (CSMOP) that leverages the structural programmability of DNA origami to precisely deposit colloidal nanomaterials within lithographically-defined resist cavities. CSMOP enables clean and accurate patterning of origami templates onto photonic chips with high yields. Soft-silicification-passivation stabilizes deposited origamis, while preserving their binding sites to attach and align colloidal quantum rods (QRs) to control their nanoscale positions and emission polarization. We demonstrate QR integration with photonic device structures including waveguides, micro-ring resonators, and bullseye photonic cavities. CSMOP therefore offers a general platform for the integration of colloidal quantum materials into photonic circuits, with broad potential to empower quantum science and technology.more » « lessFree, publicly-accessible full text available January 26, 2026
-
Polar mesospheric cloud (PMC) data obtained from the Aeronomy of Ice in the Mesosphere (AIM)/Cloud Imaging and Particle Size (CIPS) experiment and Himawari-8/Advanced Himawari Imager (AHI) observations are analyzed for multi-year climatology and interannual variations. Linkages between PMCs, mesospheric temperature, and water vapor (H2O) are further investigated with data from the Microwave Limb Sounder (MLS). Our analysis shows that PMC onset date and occurrence rate are strongly dependent on the atmospheric environment, i.e., the underlying seasonal behavior of temperature and water vapor. Upper-mesospheric dehydration by PMCs is evident in the MLS water vapor observations. The spatial patterns of the depleted water vapor correspond to the PMC occurrence region over the Arctic and Antarctic during the days after the summer solstice. The year-to-year variabilities in PMC occurrence rates and onset dates are highly correlated with mesospheric temperature and H2O. They show quasi-quadrennial oscillation (QQO) with 4–5-year periods, particularly in the southern hemisphere (SH). The combined influence of mesospheric cooling and the mesospheric H2O increase provides favorable conditions for PMC formation. The global increase in mesospheric H2O during the last decade may explain the increased PMC occurrence in the northern hemisphere (NH). Although mesospheric temperature and H2O exhibit a strong 11-year variation, little solar cycle signatures are found in the PMC occurrence during 2007–2021.more » « less
-
Abstract Knowledge of the behaviour of marine‐based ice sheets during times of climatic warming, such as the last deglaciation, provides important information to understand how ice sheets respond to external forcing. We analysed swath bathymetric and acoustic sub‐bottom profiler data from Wrigley Gulf on the western Amundsen Sea shelf, West Antarctica, to identify glacial features and reconstruct past changes in the extent of the West Antarctic Ice Sheet (WAIS) and ice flow directions. Glacial bedforms mapped within a bathymetric cross‐shelf trough include features showing cross‐cutting and overprinting relationship and indicate changes in ice‐flow orientation. Here, we distinguish at least two phases of different ice‐flow patterns on the Wrigley Gulf shelf. During the earlier phase, seaward ice stream flow on the inner shelf was deflected towards the east due to the existence of an ice dome on the middle‐outer continental shelf. Retreat of grounded ice towards the centre of this dome is indicated by the asymmetric cross profile of recessional moraines mapped on the middle shelf. The later glaciation phase was characterized by fast, NNW‐directed ice flow across the shelf along a broad front and subsequent stepwise landward retreat, which is evident from the common occurrence and orientation of mega‐scale glaciation lineations and grounding zone wedges on the middle‐inner shelf. It is uncertain whether the two phases of glaciation recorded on the seafloor occurred during the last and penultimate glacial periods or at different times of the last glaciation. Reliable chronological constraints from sediment cores and additional geomorphological information are needed to understand the cause of the changes in WAIS dynamics reflected by the two ice‐flow phases.more » « less
-
Abstract Ultraviolet (UV), visible, and near‐infrared (NIR) broadband organic photodetectors are fabricated by sequential solution‐based thin film coatings of a polymer electron blocking layer (EBL) and a polymer photoactive layer. To avoid damage to a preceding polymer EBL during a subsequent solution‐based film coating of a polymer photoactive layer due to lack of solvent orthogonality, 2‐(((4‐azido‐2,3,5,6‐tetrafluorobenzoyl)oxy)methyl)−2‐ethylpropane‐1,3‐diyl bis(4‐azido‐2,3,5,6‐tetrafluorobenzoate) (FPA‐3F) is used as a novel organic cross‐linking agent activated by UV irradiation with a wavelength of 254 nm. Solution‐processed poly[N,N′‐bis(4‐butylphenyl)‐N,N′‐bis(phenyl)‐benzidine] (poly‐TPD) films, which are cross‐linked with a FPA‐3F photocrosslinker, are used for a preceding polymer EBL. A ternary blend film composed of PTB7‐Th, COi8DFIC, and PC71BM is used as a NIR‐sensitive organic photoactive layer with strong photosensitivity in multispectral (UV–visible–NIR) wavelengths of 300–1,050 nm. Poly‐TPD films are successfully cross‐linked even with a very small amount of 1 wt% FPA‐3F. Small amounts of FPA‐3F have little detrimental effect on the electrical and optoelectronic properties of the cross‐linked poly‐TPD EBL. Finally, organic NIR photodetectors with a poly‐TPD EBL cross‐linked by the small addition of FPA‐3F (1 wt%) show the detectivity values higher than 1 × 1012Jones for the entire UV–visible–NIR wavelengths from 300 nm to 1050 nm, and the maximum detectivity values of 1.41 × 1013Jones and 8.90 × 1012Jones at the NIR wavelengths of 900 and 1000 nm, respectively.more » « less
An official website of the United States government
